A Lower Bound for the Penalty Parameter in the Exact Minimax Penalty Function Method for Solving Nondifferentiable Extremum Problems
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA New Objective Penalty Function Approach for Solving Constrained Minimax Problems
In this paper, a new objective penalty function approach is proposed for solving minimax programming problems with equality and inequality constraints. This new objective penalty function combines the objective penalty and constraint penalty. By the new objective penalty function, a constrained minimax problem is converted to minimizations of a sequence of continuously differentiable functions ...
متن کاملDecrease of the Penalty Parameter in Differentiable Penalty Function Methods
We propose a simple modification to the differentiable penalty methods for solving nonlinear programming problems. This modification decreases the penalty parameter and the ill-conditioning of the penalty method and leads to a faster convergence to the optimal solution. We extend the modification to the augmented Lagrangian method and report some numerical results on several nonlinear programmi...
متن کاملThe Exact l 1 Penalty Function Method for Constrained Nonsmooth Invex Optimization Problems
The exactness of the penalization for the exact l1 penalty function method used for solving nonsmooth constrained optimization problems with both inequality and equality constraints are presented. Thus, the equivalence between the sets of optimal solutions in the nonsmooth constrained optimization problem and its associated penalized optimization problem with the exact l1 penalty function is es...
متن کاملSmoothed Lower Order Penalty Function for Constrained Optimization Problems
The paper introduces a smoothing method to the lower order penalty function for constrained optimization problems. It is shown that, under some mild conditions, an optimal solution of the smoothed penalty problem is an approximate optimal solution of the original problem. Based on the smoothed penalty function, an algorithm is presented and its convergence is proved under some mild assumptions....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Optimization Theory and Applications
سال: 2013
ISSN: 0022-3239,1573-2878
DOI: 10.1007/s10957-013-0335-3